The Platinum/Cobalt resistance thermometer is the temperature sensor for cryogenic temperature by utilizing Platinum/Cobalt thin alloy in the sensing part, and is for the temperature measurement from cryogenic temperature area to room temperature. The Platinum/Cobalt thin alloy is Platinum alloyed with trace amounts of Cobalt, and has superior characteristics as a cryogenic temperature sensor because its resistance value and sensitivity in cryogenic temperature range are far bigger than precious metals like as Platinum. Two kinds of thermometers, R800-6 up to 4K and R800-7 up to 15K, are available.

- The temperature from the cryogenic temperature (R800-6 4K, R800-7 15K) to the room temperature (300K) can be measured by a single sensor.

- The accuracy in the whole measuring range is high (±0.5K) and the sensor is interchangeable.

- The thin capsule metal type durable construction offers low heat capacity and excellent stability.

- Due to 4-wire type, precision measurement by a DC potentiometer can be executed.

General Specifications
Measuring element: Platinum/Cobalt thin alloy
Measuring temperature: 4K to 375K (R800-6)
15K to 375K (R800-7)
Resistance value at 0ºC: 100Ω ± 0.15Ω
Sensitivity: Min. 0.090/K at 12K
Max. 0.400/K
Repeatability: Within 10mK
Nominal current: 2mA
Self-heat characteristic: 4mK/1mA (in LN₂)
Temperature measurement construction:
Spiral coil type aluminum ceramic construction
Protective tube:
Capsule type brass with gold plated
Ø2.0mm x L23mm
Lead wire:
4-wire type, Polyester covered copper wire
Ø0.2m x L1000mm
Response time:
5 seconds at 90% response
(0ºC → Liquid oxygen)

External Dimensions

![Diagram](image)
Specifications subject to change without notice. Original 2002.10

TEMPERATURE – RESISTANCE CHARACTERISTICS

TEMPERATURE – SENSITIVITY CHARACTERISTICS

TEMPERATURE – RESISTANCE VALUE TABLE

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>Resistance value (Ω)</th>
<th>Temperature (K)</th>
<th>Resistance value (Ω)</th>
<th>Temperature (K)</th>
<th>Resistance value (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>7.792</td>
<td>110</td>
<td>40.280</td>
<td>220</td>
<td>81.094</td>
</tr>
<tr>
<td>10</td>
<td>8.483</td>
<td>120</td>
<td>44.134</td>
<td>230</td>
<td>84.680</td>
</tr>
<tr>
<td>20</td>
<td>9.506</td>
<td>130</td>
<td>47.951</td>
<td>240</td>
<td>88.252</td>
</tr>
<tr>
<td>30</td>
<td>11.246</td>
<td>140</td>
<td>51.734</td>
<td>250</td>
<td>91.811</td>
</tr>
<tr>
<td>40</td>
<td>13.853</td>
<td>150</td>
<td>55.482</td>
<td>260</td>
<td>95.356</td>
</tr>
<tr>
<td>50</td>
<td>17.109</td>
<td>160</td>
<td>59.207</td>
<td>270</td>
<td>98.889</td>
</tr>
<tr>
<td>60</td>
<td>20.759</td>
<td>170</td>
<td>62.906</td>
<td>280</td>
<td>102.411</td>
</tr>
<tr>
<td>70</td>
<td>24.611</td>
<td>180</td>
<td>66.583</td>
<td>290</td>
<td>105.921</td>
</tr>
<tr>
<td>80</td>
<td>28.534</td>
<td>190</td>
<td>70.239</td>
<td>300</td>
<td>109.419</td>
</tr>
<tr>
<td>90</td>
<td>32.477</td>
<td>200</td>
<td>73.875</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>36.394</td>
<td>210</td>
<td>77.493</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>