CAB－F201

 series
$\pm 0.01^{\circ} \mathrm{C}$ の高精度！
 $0.001^{\circ} \mathrm{C}$ の高分解解！！

CAB－F201シリーズは3線式および4線式測温抵抗体の高精度デジタル温度計で，2点または8点の温度測定が可能です。

温度センサの校正データはメモリーでき，正確な温度測定が実現できます。
また，2本のセンサの温度差を演算することで温度差計としても使用でき，
幅広いニーズに対応いたします。

■特 長
－4線式 $\pm 0.01^{\circ} \mathrm{C}$ ， 3 線式 $\pm 0.05^{\circ} \mathrm{C}$ の高精度
$0.001^{\circ} \mathrm{C}$ の高分解能

- $200^{\circ} \mathrm{C}$ から $850^{\circ} \mathrm{C}$ の幅広い温度測定範囲
- 1年間に0．005C以下の高安定性
- 入力点数 2 点または 8 点で，各点ごとに3線 $/ 4$ 線選択可
- 温度差表示も可能

ORS－232C通信インターフェイスを標準装備
OITS90，EN60751（DIN90）および
CVD（CALLENDAR－VAN DUSEN）に対応
－表示単位ぱC，K，Ω を用意

形 式
－本体
CAB－F201－$\square \square$ 入力点数
$2: 2$ 点
$8: 8$ 点
○ハッケージソフト（付属 英語版のみ）
U－LOG
－実用標準白金測温抵抗体（別売）
R900－F25AD

仕 様
測定温度範囲：$-200 \sim 850^{\circ} \mathrm{C}$（白金測温抵抗体の種類に依存）
精 度 定 格：$\pm 0.01^{\circ} \mathrm{C}$ フルレンジ（ 4 線式） $\pm 0.05^{\circ} \mathrm{C}$ フルレンジ（3線式）上記はCAB－F201本体の精度で，測温抵抗体の精度は含まれません。
表示分解能： $0.001^{\circ} \mathrm{C}$
繰 返 し 性：± 2 デジット $\left(\pm 0.002^{\circ} \mathrm{C}\right)$ 精度に含まれる
安 定 性：長期：代表値 $0.002 \Omega /$ 年以下

$$
\text { (Pt100にて } 0.005^{\circ} \mathrm{C} \text { 以下) }
$$

温 度 係 数： $0.00005^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
データ入力形式：ITS90係数，CVD係数，非校正プローブ用 EN60751（DIN90）
測 定 電 流：1mA
入 力 種 類：Pt100（3線式および4線式）
～EN60751 R0＝100（Pt100）高アルファプロープは0．00392まで
入カコネクタ：5ピン工業用DINソケットコネクタ
通信ポート：RS－232C（4kVアインレーション，ボーレート9600， クロスケーブル）
精度補償条件：温度範囲 $\cdots 15 \sim 25^{\circ} \mathrm{C}$
湿度範囲 $\cdots 10 ~ 90 \%$ rh（結露しないこと）
使 用 範 囲： $0 \sim 40^{\circ} \mathrm{C}, ~ 10 \sim 90 \%$ rh（結露しないこと）
電 源：90～264VAC $47 \sim 63 \mathrm{~Hz}$
消 費 電 力：最大30VA
質 量：約 1 kg
外形寸法

パッケージソフト仕様
動 作 環 境：Windows10（64bit）が動作するパソコン （RS－232C：1ポートまたは USB：1ポート＊） ※USB接続は，RS－232C－USBケーブル（市眅）が必要です。

機
能：CAB－F201のデータ収集，トレンド表示，測定データのCSV形式保存
言
語：英語

実用白金測温抵抗体 R900－F25AD（別売）

素 子：Pt100 4線式
測定温度範囲：$-200 \sim 420^{\circ} \mathrm{C}$
測 定 電 流： 1 mA
絶 縁 抵 抗： $1 \mathrm{M} \Omega$ 以上（ $450^{\circ} \mathrm{C}$ にて）
絶 縁 物：高純度マグネシア（ MgO ）
接 続 導 線：内シールド付きビニール被覆導線，2m付き
保護管材質：SUS316
保護管寸法：$\phi 4.8 \times 600 \mathrm{~mm}$

外形寸法

単位：mm

CAB－F201で高精度な温度測定を行うために

（1）CAB－F2O1に組み合わせるセンサ（R900－F25AD）の目盛校正試験を行い，本体（CAB－F2O1）に校正データを入力 する必要があります。
（2）さらに，目盛校正試験後のセンサ（R900－F25AD）と本体（CAB－F201）を組み合わせて目盛校正試験を行えば，より高精度な温度測定を行うことができます。目盛校正試験の詳細については，校正試験カタログ（No．CX－31）をご覧になるか，弊社営業所までお問い合わせください。

